A New Statistical Model for Multisensor Change Detection

Jorge PRENDES, Marie CHABERT, Frédéric PASCAL, Alain GIROS, Jean-Yves TOURNERET

TéSA – Supélec-SONDRA – INP/ENSEEIHT – CNES

April 2, 2014
Outline

1. Introduction
2. Image Model
3. Similarity Measure
4. Results
5. Conclusions
Motivation

- Monitor urban/rural area evolution
 - Detect new constructions
 - Track changes in agricultural areas
 - Track urban growth

- Coordinate efforts after natural disasters
 - Volcano eruptions
 - Floodings
 - Earthquakes

- Database updating

- Improve the analysis of remote sensing images
 - Find new objects
Introduction – Change Detection for Remote Sensing Images

Optical Images
- **Pro**
 - High resolution
 - Easy to interpret
 - Low noise
- **Cons**
 - Needs sunlight
 - Weather dependent

Radar (SAR) Images
- **Pro**
 - Can be acquired at night
 - Not occluded by clouds
- **Cons**
 - Lower resolution
 - Speckle noise
 - Interpretation problems
Introduction – Change Detection for Remote Sensing Images

Usual Change Detection Framework

- Define a sliding window W
- Compute a *similarity measure* on W
- Threshold the measure to detect changes

Statistical Similarity Measures

- Measure the dependency between pixel intensities
 - Correlation Coefficient
 - Mutual Information
- Others
 - KL-Divergence
Introduction – Change Detection for Remote Sensing Images

Correlation Coefficient (CC)
- Measures linear correlations
 - Only one of many kinds of dependencies!
- Good for homogeneous sensors
- Fails for homogeneous regions
 - Low spatial resolution
Introduction – Change Detection for Remote Sensing Images

Mutual Information (MI)
- Measures statistical dependency
- Good for heterogeneous and homogeneous sensors
 - Requires a good estimation of the joint distribution!
- Fails for homogeneous regions
 - Low spatial resolution
Image Model – Optical image for Homogeneous Regions

Sensor Measurements

- Affected by additive Gaussian noise

\[I_{Opt} = T_{Opt}(P) + \nu \mathcal{N}(0, \sigma^2) \]

\[I_{Opt}|P \sim \mathcal{N} \left[T_{Opt}(P), \sigma^2 \right] \]

where

- \(T_{Opt}(P) \) is how an object with physical properties \(P \) would be ideally seen by an optical sensor
- \(\sigma^2 \) is associated with the noise variance

Histogram of the normalized image
Image Model – SAR Image for Homogeneous Regions

Sensor Measurements

- Affected by multiplicative speckle noise (with gamma distribution)

\[I_{SAR} = T_{SAR}(P) \times \nu_{\Gamma}(L, \frac{1}{L}) \]

\[I_{SAR}|P \sim \Gamma \left[L, \frac{T_{SAR}(P)}{L} \right] \]

where

- \(T_{SAR}(P) \) is how an object with physical properties \(P \) would be ideally seen by a SAR sensor
- \(L \) is the number of looks of the SAR sensor

Histogram of the normalized image
Image Model – Joint Distribution for Homogeneous Regions

- Independence assumption for the sensor noises

\[p(I_{Opt}, I_{SAR}|P) = p(I_{Opt}|P) \times p(I_{SAR}|P) \]

- Conclusion
 Statistical dependency (CC, MI) is not always an appropriate similarity measure
Image Model – Heterogeneous Regions

Sliding window W

- Usually includes a finite number of objects, K
- Different values of P for each object

$$\Pr(P = P_k|W) = w_k$$

$$p(I_{Opt}, I_{SAR}|W) = \sum_{k=1}^{K} w_k p(I_{Opt}, I_{SAR}|P_k)$$

- Mixture distribution!
Similarity Measure – Introduction

Mixture distribution

- Parameters estimation methods
 - Method of moments
 - Expectation Maximization Algorithm
 - Markov Chain Monte Carlo Methods

- Estimates
 - Related to P
 - Can be used to derive $[T_{\text{Opt}}(P), T_{\text{SAR}}(P)]$ for each object
Similarity Measure – Manifold

Manifold learning

- For each unchanged window, $v(P) = [T_{Opt}(P), T_{SAR}(P)]$ can be considered as a point on a manifold.
Similarity Measure – Manifold

Unchanged regions
- Pixels belong to the **same** object
- P is the same for both images

Changed regions
- Pixels belong to **different** objects
- P changes from one image to another

![Graphs showing TSAR and TOpt](image_url)
Similarity Measure – Manifold

Distance measure between Optical and SAR images

- PDF of \(\nu(P) \)
- Good distance measure
- Learned using training data from unchanged images

\[
H_0 : \text{Absence of change} \\
H_1 : \text{Presence of change}
\]

\[
\sum_{k=1}^{K} \hat{w}_k \hat{p}_T (\hat{v}_{W,k}) \overset{H_0}{\gtrless} \tau \overset{H_1}{=} \tau
\]

where

- \(\hat{w}_k \) is the estimated \(w_k \)
- \(\hat{v}_{W,k} \) is the estimated vector \(\nu \) for the \(k \)-th component of the window \(W \)
- \(\hat{p}_T \) is the estimated density of \(\nu(P) \)
- \(\tau \) is an application dependent threshold
Similarity Measure – Summary

Using several windows

Manifold Estimation
Results – Synthetic Optical and SAR Images

Synthetic optical image

Synthetic SAR image

Change mask

Mutual Information

Correlation Coefficient

Proposed Method

Performance – ROC
Results – Real Optical and SAR Images

Optical image before the flooding | SAR image during the flooding | Change mask

Mutual Information | Conditional Copulas [1] | Proposed Method

Performance – ROC

Results – Pléiades Images

Pléiades – May 2012
Pléiades – Sept. 2013

Change mask

Change map

Performance – ROC

Special thanks to CNES for providing the Pléiades images
Results – Pléiades and Google Earth Images

Pléiades – May 2012
Google Earth – July 2013

Change mask

Change map

Performance – ROC
Results

Homogeneous images

- **CC and MI**
 - Similar performance
- **Proposed method**
 - Improved performance

Heterogeneous images

- **CC**
 - Reduced Performance
- **Proposed method and MI**
 - Performance not affected
Conclusions

- New statistical model to describe multi-channel images
 - Analyze the joint behavior of the channels to detect changes, in contrast with channel by channel analysis
 - e.g., Pléiades multi-spectral and panchromatic images

- New similarity measure showing encouraging results for homogeneous and heterogeneous sensors
 - Pléiades–Pléiades
 - Pléiades – SAR
 - Pléiades – Other VHR instrument

- Interesting for many applications
 - Change detection
 - Registration
 - Segmentation
 - Classification
Conclusions and Future Work

Future Work

- Include priors on the sensor parameters: Bayesian methods
- Study the method performance for different image features
 - Texture coefficients: Haralick, Gabor, QMF
 - Wavelet coefficients
 - Gradients
Thank you for your attention

Jorge Prendes
jorge.prendes@tesa.prd.fr